つくりながら学ぶ!PyTorchによる発展ディープラーニング 電子書籍版
3828円(税込)
作品内容
※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。本書ではディープラーニングの発展・応用手法を実装しながら学習していきます。ディープラーニングの実装パッケージとしてPyTorchを利用します。扱うタスク内容とディープラーニングモデルは次の通りで「ビジネスの現場でディープラーニングを活用するためにも実装経験を積んでおきたいタスク」という観点で選定しました。 [本書で学習できるタスク] 転移学習、ファインチューニング:少量の画像データからディープラーニングモデルを構築 物体検出(SSD):画像のどこに何が映っているのかを検出 セマンティックセグメンテーション(PSPNet):ピクセルレベルで画像内の物体を検出 姿勢推定(OpenPose):人物を検出し人体の各部位を同定しリンク GAN(DCGAN、Self-Attention GAN):現実に存在するような画像を生成 異常検知(AnoGAN、Efficient GAN):正常画像のみからGANで異常画像を検出 自然言語処理(Transformer、BERT):テキストデータの感情分析を実施 動画分類(3DCNN、ECO):人物動作の動画データをクラス分類 本書は第1章から順番に様々なタスクに対するディープラーニングモデルの実装に取り組むことで高度かつ応用的な手法が徐々に身につく構成となっています。各ディープラーニングモデルは執筆時点でState-of-the-Art(最高性能モデル)の土台となっており、実装できるようになればその後の研究・開発に役立つことでしょう。 ディープラーニングの発展・応用手法を楽しく学んでいただければ幸いです。
作品情報
作者の関連作品作者の作品一覧
この作品が好きな方はこちらもおすすめ