やさしく学べるサポートベクトルマシン ―数学の基礎とPythonによる実践― 電子書籍版
3300円(税込)
作品内容
※この商品はタブレットなど大きいディスプレイを備えた端末で読むことに適しています。また、文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。サポートベクトルマシンの理論と実践の基礎・基本が,この1冊で学べる!サポートベクトルマシンは、データの分類、回帰、はずれ値検知など、機械学習のさまざまな場面で強力かつ柔軟性の高いモデルとして知られています。そのアルゴリズムは直観的であり数学的な曖昧さがないことから、昨今注目されている「機械学習の解釈可能性」というモデルの評価基準に照らしても有力な手法といえます。そのため、自然科学や経済学等の研究成果や経験則的な業務知識をモデルに生かすことも容易です。本書は、サポートベクトルマシンの理論的枠組みを高校レベルの数学からやさしく展開するとともに、Pythonによるわかりやすい実装例を紹介します。また、応用上重要な非線形サポートベクトルマシンで用いられるカーネル法も、図解や具体例を通してわかりやすく解説します。第1章 はじめに1.1 人工知能と機械学習 1.1.1 人工知能による推論 1.1.2 人工知能による学習 1.1.3 機械学習1.2 機械学習モデル 1.2.1 モデル 1.2.2 機械学習モデル1.3 機械学習分類モデルの作りかた1.4 サポートベクトルマシンの概要1.5 サポートベクトルマシンの特徴1.6 本書の読みかた第2章 数学の基礎2.1 ベクトル 2.1.1 ベクトルとは何か 2.1.2 位置ベクトル 2.1.3 三角比と余弦定理 2.1.4 ベクトルの内積 2.1.5 点と直線の距離 2.1.6 Pythonでベクトル2.2 行列 2.2.1 行列とは何か 2.2.2 行列の演算 2.2.3 転置行列 2.2.4 半正定値行列 2.2.5 Pythonで行列2.3 関数 2.3.1 関数とは何か 2.3.2 指数関数 2.3.3 対数関数 2.3.4 Pythonで指数関数・対数関数2.4 微分 2.4.1 平均変化率 2.4.2 微分 2.4.3 合成関数の微分 2.4.4 指数関数・対数関数の微分 2.4.5 偏微分 2.4.6 級数展開第3章 線形サポートベクトルマシン(線形SVM)3.1 線形SVM 3.1.1 線形ハードマージンSVM 3.1.2 線形ソフトマージンSVM3.2 線形SVMの最適化 3.2.1 ラグランジュの未定乗数法 3.2.2 KKT条件 3.2.3 線形SVM最適化の方法3.3 線形SVMによる分類問題の解法 3.3.1 ペンギン分類モデル 3.3.2 Pythonでペンギンの分類 3.3.3 2値分類モデルの評価 3.3.4 ペンギン分類モデルの評価第4章 非線形サポートベクトルマシン(非線形SVM)4.1 非線形SVM 4.1.1 カーネル法 4.1.2 カーネル関数の具体例 4.1.3 カーネル化SVMの定式化4.2 非線形SVMの最適化 4.2.1 逐次最小最適化アルゴリズム(SMO) 4.2.2 非線形SVM最適化の方法4.3 非線形SVMによる分類問題の解法 4.3.1 カーネル化SVMによる非線形分類モデル 4.3.2 カーネル化SVMによる分類問題の解法 4.3.3 Pythonでアヤメ分類付録 Pythonの基礎A.1 開発環境ColabA.2 Python文法の要点 A.2.1 データ型 A.2.2 演算子 A.2.3 条件分岐 A.2.4 繰返し A.2.5 組込み関数 A.2.6 関数定義 A.2.7 クラス A.2.8 変数のスコープA.3 Pythonライブラリ群 A.3.1 NumPy A.3.2 pandas A.3.3 SymPy A.3.4 matplotlib A.3.5 scikit-learn本書を読み終えた後に
作品情報
作者の関連作品作者の作品一覧
この作品が好きな方はこちらもおすすめ